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Abstract. This paper presents an implementation and critical analysis of a technique for automated, rigorous scientific 
program comprehension and error detection.  The procedure involves taking a user’s existing code, adding semantic 
declarations for some primitive variables, symbolically executing the user’s code, and recognizing semantic concepts from 
the symbolic expressions generated.  This analysis provides high-level, semantic information and detects errors in a user’s 
code.  Since a user’s code is executed symbolically, the analysis is general, replacing many test cases.  Symbolic execution 
of a 5k line of code (LOC) scientific code demonstrates implementation of a practical symbolic execution / semantic 
analysis tool.  Although this technique promises a powerful tool, several challenges remain. 

 
 
1 Introduction 
 
While computer hardware speed and cost have improved exponentially, software development has not experienced similar 
technology driven growth, and arguably, it remains a manual process.  Symptomatically, software engineering techniques 
largely ignore code semantics—the what, how, and why of a computer code; these semantics are left to the code developer.  
As scientific code developers, we recognize that our scientific programs involve an organization of classic mathematical, 
logical, and physical concepts.  Further, we recognize that programs from a wide range of scientific and engineering fields use 
and reuse these same fundamental concepts in different combinations. 
 
These code semantics are important to all stages of the software development cycle.  The planning, development, debugging, 
and verification of software involve correctly implementing semantics within the code.  Understanding code during the 
maintenance phase or finding errors in code involves comprehending code semantics.  For example finding the error in the 
second difference code (1) involves comprehending the semantics of difference equations.   

                                                                       FS(I,J) = DW(I+2,J) – 2.*DW(I,J) + DW(I-1,J)                                                  (1) 

The cost of the existing manual approach in terms of frustration, time, and effort is considerable, but it is still relatively small 
when compared with the cost of software failure—particularly for mission critical applications[1].  Consequently, what is 
necessary is a theory of code semantics. 
 
This paper reports on an effort to formalize and automatically analyze these scientific code semantics.  In particular, there are 
two interrelated elements of the current approach: symbolic execution of a user’s code, and semantic analysis of the resulting 
symbolic expressions.  The thesis of symbolic execution is that the semantics of a programming language’s construct (the 
variables, data structures, and operators) can be faithfully represented symbolically.  Further, this symbolic representation can 
be propagated during an execution of the code to provide a general and rigorous analysis.  This approach is heavily dependent 
on the classical mathematical and logical concepts and notation that code developers and engineers are familiar with. 
 
This symbolic execution, however, generates symbolic expressions; for example, symbolic execution of (2a, b) generates 
mathematical and logical expressions for A and N.   

                                                                            A = B * C                                                                                         2(a) 
                                                                            IF ( N .GT. 100 ) N = 100                                                                 (b) 

As these and further expressions are generated and used they will grow exponentially—unless they are simplified.  Here 
semantic analysis uses parsers to automatically recognize the use of mathematical and logical concepts and simplify these 
expressions.  For example, (2b) could be simplified by bounding N by 100.  Further, errors are detected when expressions 
cannot be recognized.  For example, in Code 1, the first—but not the second—unit conversion is recognized; this process 
actually lead to the detection of this error in a code. 
 
 



Code 1: Analysis detects the unit conversion error 
 
       pi = 4.*atan(1.) 
       degtor = 180./pi 
       … 
       angle = angle * degtor                  
       … 
       angle = angle * degtor                  
 
This symbolic execution / semantic analysis procedure is appealing for three reasons.  First, scientifically and intellectually 
speaking, it addresses fundamental code semantics which are the currency of program developers.  Second, human 
programmers analyze code at approximately 0.5 LOC per minute; symbolic execution runs quickly—approximately 1000 
times faster than a human—often faster than numerically executing the code itself!  Third, the procedure uses the abstraction 
of symbols—not numbers—and the descriptive power of classical mathematical notation.  This abstraction with symbolic 
notation is what makes this technique general and rigorous, that is, a single symbolic analysis can replace testing with a suite 
of conventional test cases.  In Code 2, for example, if the search fails, a memory bounds error occurs.  Symbolic execution 
detected this error, but numerical execution would require a specific set of inputs before this error occurred. 
 
Code 2: Analysis detects how the search failure results in a memory access error 

       Dimension array(100) 
       … 
       Do 10 I = 1, 100                 
          If ( test_value .le. array(i) ) goto 20  
10   Continue                 
20   value = array(I) 

 
Balancing these advantages are challenges.  Symbolic execution is a difficult mathematical and computer science problem; a 
wealth of semantic concepts exist that can be organized in complex ways that must be recognized with high reliability. 
 
The concept of symbolic execution was introduced by King[2] in 1976.  In a review article, Coward[3] suggests symbolic 
execution has languished due to the difficulty of implementation, and cites four problems among the systems studied:  

1) evaluating array references dependent on input (symbolic) values,  
2) the evaluation of loops where the number of iterations is unknown,  
3) checking the feasibility of paths: how to process branch conditions dependent on symbolic expressions, 
4) how to process module calls: symbolically execute each call or execute once and abstract,  

Code semantics have been the focus of some work[4,5,6] including the use of an ontology and parsers for natural language 
understanding[7].  The current work focuses on code analysis, in the belief that code synthesis[8,9] cannot be done 
completely without an understanding of code semantics.  Petty[10] presents an impressive procedure where—during 
numerical execution—the units of variables and array elements are analyzed.  The procedure can be easily applied to a user’s 
code; however the numerical execution results in high wall-time and memory requirements. 

 
In the following sections, the symbolic execution procedure is explained, key problems and solutions are presented, and 
results are demonstrated including results for a 5k LOC scientific code.  Finally, the remaining challenges are discussed.  
 
2 Symbolic Execution Procedure   
 
In outline, the symbolic execution / semantic analysis procedure consists of three steps (Figure 1).  First, the user adds 
semantic declarations to the program to be analyzed.  Semantic declarations (3) provide the symbolic identity of primitive 
variables in the code; they replace any program inputs or input files.  

                                                                            A <= acceleration, m/s2;                                                                                  (3) 
                                                                            M <= mass, kg; 

Second, a parser converts the user’s code and semantic declarations into a tree representation in a language independent form.  
Third, symbolic execution / semantic analysis of the code occurs. 
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Figure 1: Overview of the symbolic execution / semantic analysis procedure.  Expert parsers recognize formulae and 
concepts generated during symbolic execution. 
 
2.1 Symbolic Execution 
 
In symbolic execution, an emulator program executes statements from the user’s program.  Instead of loading into memory 
numerical values of input variables, the emulator uses symbolic values that describe the input variables; the emulator takes 
statements from the user’s program (the common representation—a tree), performs the operations on these symbols, and 
generates symbolic expressions.  Table 1 contrasts numerical and symbolic execution. 

Table 1: Comparison of numerical and symbolic execution for code statements.  For numerical execution, the input file 
contains “4 5”; the semantic declarations are (3). 

 
Code 

Statement 
Numerical 
Execution 

Symbolic Execution/ 
Semantic Analysis 

READ M, A Put 4 into M, 
5 into A 

Attach  Semantic Declaration 
to Instance of M and A 

B = 10 Transfer 
Number Value Transfer Symbolic Value 

M * A Calculate 4 * 5 
Form “mass * acceleration”, 

“kg * m/s2” 
and attempt simplification 

If (A.eq.5) 
then B=5 

A.eq.5 is True, 
so 

Transfer 5 to B 

Form “A.eq.5 => 5 | B” 
and attempt simplification 

 

 

 

 

 

 

 

 
Just as a compiler has an action (memory fetches, operations, and memory stores) for each statement, this symbolic execution 
process has a prescribed action or response to each statement encountered in a user’s program.  The difference is that the 
response is symbolic; the operators +,-, *,  /,   **  prompt   the  formation  of  a  symbolic expression; an array reference 
prompts searching an array representation, and symbolically testing for relative position; a logical expression prompts 
symbolic testing of branches, and the exploration of potential paths. 
 
2.2 Semantic Analysis 

 



 
As statements are symbolically executed, the generated symbolic expressions become exponentially larger—unless they are 
simplified.  The role of semantic analysis is to recognize and simplify the fundamental mathematical formulae used in these 
expressions.   
 
These formulae are recognized and simplified using parsers[11,12].  Parsers’ balance between efficiency[13] and recognition 
limitations make them a key element of compilers as well as a good choice for recognition in semantic analysis. From a 
carefully written set of rules with actions, YACC[11] generates a module that can recognize formulae and perform actions. 
Details of how formulae are recognized in parsers are given in [14].   
 
Successful symbolic execution requires the semantic analysis of array references, array assignments, logical expressions, and 
other operations.  But parsers can do more!  Symbolic representations can be found for more semantic aspects of scientific 
and engineering code, including units, dimensions, vector analysis, and physical and mathematical equations.  Table 2 
provides a complete list. 
 
The ultimate objective of this work is semantic analysis of all conceivable semantic properties which would perform 
extensive error checking.  However, correct symbolic execution is a prerequisite for semantic analysis of all these properties.  
Consequently, the focus of this work has been to ensure correct symbolic execution and verify it with semantic analysis of 
units.  As a result, semantic analysis of mathematical and logical expressions is relatively advanced when compared with 
analysis of physical formulae. 
Table 2: Scientific semantic properties analyzed by the procedure, including sample equations and number of parsers. 

 Property Analyzed Sample Equation Parsers
Physical Equation force ⇐  mass * accel 3 

Math Equation ∆φ ⇐  φ - φ 5 
Logical Expression φ ⇐  If (True) φ else θ 2 

Value / Interval [1,50] ⇐ [0,49] + 1  2 
Grid Location φi ⇐  φi+1 + φi-1  4 

Vector Analysis φ⋅φ ⇐ φx
2 + φy

2 + φz
2 1 

Non-Dimensional φ/A  ⇐  χ/A  +  ϕ/A 1 
Dimensions L  ⇐  (L/T)  *  T 1 

Unit m  ⇐  m/s  *  s  1 
Object fluid ⇐ fluid * anything 1 

Data Type Real ⇐ Real * Integer 1 
Language Emulation mass ⇐ A(I,J,K) ⇐ mass 2 

 

 

 

 

 

 

 

 
 
 
 
3 Where Symbolic Execution Becomes Difficult: Five Key Pieces 
 
Symbolic execution of mathematical operations (+, -, *, /, **), and assignment involve operator actions that are similar to 
numerical execution.  However, the similarities end with array references, loops, and logical expressions!  When these 
programming constructs involve variables with unknown values, the symbolic action code becomes more complex.  While 
numerical execution of an array evaluation involves retrieving a value at a known index, symbolic execution must retrieve 
array elements within an index range.  While numerical execution of a loop involves executing code a known number of 
times, symbolic execution must represent execution symbolically and group together symbolically equivalent operations 
within the loop range.  While numerical execution of a logical expression involves using a known value to choose a logical 
branch, symbolic execution must pursue each possible branch. 
 
Although the symbolic execution code is more complex than for numerical execution, advantages exist.  The principle 
advantage is greater generality and rigorousness; the following three sections will pursue this issue for array representation, 
loops, and logical expressions. 
 
3.1 Array Assignments and References   
 

 



Array analysis is a major hurdle in symbolic execution; here this hurdle is overcome with an ontology for array indices that 
allows the grouping of symbolically identical array elements.   After symbolic  execution  of  Code 3,  
 
Code 3: Simple Loop shows how loops and array references are symbolically executed. 
 

       Integer  A(100) 
       Read  N 
       A(1) = 5                   
       Do 10 i=4,N  
          A(i) = 1 
10    continue 

 
the array A is represented as in Figure 2 where the fourth through Nth (and 2nd,3rd and N-1st to 100th) array elements have been 
grouped together, while the first array element has not.   
 1 2 N 100 4 
 
 15 
 
Figure 2:  Symbolic representation of the array A() after execution of Code 3.  Undefined values are diagonally shaded; array 
values are in bold; array indices are above. 

This grouping of symbolically identical array elements is intuitively clear, yet it has implications.  Grouping allows symbolic 
representation of arrays, and this array representation uses memory efficiently.  More importantly, where loops apply an 
identical operation over large parts of an array—as is so common in scientific computing—the semantic analysis is reduced to 
one analysis of an array assignment or reference.   With reductions like this—and others—symbolic execution and semantic 
analysis of a user’s code is fast—possibly faster than numerical execution of the same code.  

 
This grouping of array elements requires a particular ontology for array indices; the ontology entities are shown in Table 3.  
In Code 3, scientific code developers will easily recognize array variable “i” is a Counter, variable “N” is a Number; the 
remaining array index entities in Table 3 are more obscure and infrequently used.  This ontology is not necessarily closed; as 
array index constructs with different semantics are encountered, this list and the accompanying rules can be extended. 

Table 3: Entities in the Array Index Ontology.  All are integer valued.  

 
Entity Role of Entity 

Integer Constant A Known,   
Unchanging Value 

Number A Variable: Unspecified, Unchanging Value 

Counter A Variable: taking on all Integer values in a 
range 

Compressed  
Counter 

 Scalar Representation of Counters for 
Multiple Array Indices 

Enumeration A Product of Integer Constant and Number 
expressions 

Offset Delineates Multiple Arrays Stored in 1-D 
Array 

Offset Index Offset plus Compressed Counter 

Index Number A Variable: Unspecified, Unchanging 
Value, in a range 

Compressed  
Index Number 

Scalar Representation of Index Numbers 
for Multiple Array Indices 

 

 

 

 

 

 

 

 

 

 
During symbolic execution of a user’s code (Figure 1), when the emulator encounters an array reference or assignment, 
operator action routines are initiated that locate the required elements in the array representation.  These action routines 
compare the array indices—symbolically!—with the symbolic bounds of the groupings in the array representation.  For 
example, to reference A(N+1) in Figure 2, the procedure compares N+1 with 1, 2, 4, N, and 100, and concludes A(N+1) is in 
the final grouping of array entries from N+1 to 100.  Note that the existence of A(N+1) is subject to the condition that N+1 ≤ 
100—a condition imposed on number N. 

 



3.2 Loop Evaluation 
 
Loop evaluation is a further hurdle in symbolic execution.  The issue is whether dependencies exist between loop iterations; if 
not, then straight line symbolic execution is possible.  Here this hurdle is overcome by analyzing when variables are used and 
set within the loop code.  Note that here the terms ‘used’ and ‘set’ are not used in a global sense; instead they are used in a 
local sense—within the loop code only.  
 
The loop in Code 3 is the simplest loop type.  Within the loop’s code, all variables and array entries are Set-Before-Used 
(SBU); consequently no dependencies exist between loop iterations, and the loop can be executed in a single pass.   
 
Code 4 contains a variable, ijlast, which is Used-Before-Set (UBS) within both loops.  Loop code blocks with UBS variables 
have dependencies between loop iterations and require two symbolic execution passes—more if the loop block is nested.  In 
the first symbolic execution pass, the procedure determines the variable’s initial value and the change between iterations; by 
mathematical induction, an expert parser tries to recognize the variable’s symbolic value at a general iteration.  The second 
execution pass executes with this general form.  Loops containing UBS variables are identified in a pre-processor step (Figure 
1) so that this analysis is used only where needed. 
 
Code 4: Code for calculating an Offset Index, demonstrates inter-iteration dependencies for the variable ijlast—hence it is a 
UBS variable. 
      ijlast = imax(1) * jmax(1) 
      ijx    = - ijlast 
      ijq    = - 4 * ijlast 
      do 20 ng = 1, ngrid 
        ijx       = ijx + ijlast 
        ilocx(ng) = ijx 
        do 10 nb = 1, nblade(ng) 
          ijq          = ijq + 4 * ijlast 
          ilocq(nb,ng) = ijq 
          ijlast       = imax(ng) * jmax(ng) 
   10   continue 
   20 continue 
 
3.3 Conditional Expressions 
 
Symbolic execution of conditional expressions is a challenging issue since symbolic values in the condition force the 
examination of each conditional branch.  The current procedure symbolically executes the statements from each possible 
branch.  A hierarchical symbol table allows an independent sibling symbol table for each branch (with inheritance of parental 
symbolic values).  For each variable, the procedure forms a conditional expression that is valid following the conditional 
expression.  The simplified expression is propagated through the following code.  
 
3.4 Subroutine Calls 
 
Calls to routines are not problematic in this symbolic execution procedure.  The current procedure responds to routine calls by 
symbolically transferring call line parameters and global variables to a child symbol table, and then symbolically executing 
the routine.  Upon completion of the routine, call line parameters and global variables can be updated in the parent symbol 
table. 
 
In the test cases studied, repeat calls to routines were not excessive since routine calls within loops are executed once or a few 
times.  In principle, symbolically identical routine calls need not be repeated, but this feature has not been implemented yet. 
 
3.5 Speed of Symbolic Execution/Semantic Analysis  
 
The wall time requirements for symbolic execution of a code are fundamentally different from the wall time requirements of 
numerical execution.  Two opposing issues influence the wall time—and decide the economics—of symbolic execution.   
 

 



First, symbolic execution is orders of magnitude slower than numerical execution on an operation by operation basis.  
Numerical execution of “A*B” includes memory accesses and a floating point operation—usually within optimized software 
and hardware; symbolic execution of “A*B” includes constructing a data structure representation of the expression, and its 
examination by several expert parsers (Figure 1).  Further, array index evaluation can be enormously expensive, due to the 
symbolic search through the array representation. 
 
Second, the computationally demanding parts of scientific codes are the iterations of code within loops.  Yet, in symbolic 
execution of a loop, symbolically equivalent (and numerically different) iterations can be grouped together and analyzed 
once.  This can be a massive saving!  In addition to routine calls within loops being analyzed once, repeated calls to routines 
can be analyzed once when the calls are symbolically equivalent. 
 
These two issues interact to produce faster symbolic than numerical execution for loop intensive code.  Conversely, codes 
with fewer loops can execute more slowly symbolically than numerically. 

 
4 Demonstration of Results 
 
This symbolic execution / semantic analysis procedure has been developed and tested with three codes.  
 
COMDES is a 1-dimensional aerodynamic design code written in FORTRAN77 with extensive use of aerodynamic formulae, 
relatively less use of mathematical formulae, and minimal use of subroutines.  Symbolic execution completes successfully 
with 100% semantic analysis of units (Table4). 
 
STAGE2 is a 5k LOC, 2-dimensional computational fluid dynamics (CFD) code that solves turbulent, aerodynamic flow over 
compressor blade sections.  Written in FORTRAN77, it is aggressively coded and makes extensive use of mathematical 
formulae, loops, array references and assignments (compacting multi-dimensional arrays into a 1D array, and multiple blocks 
of data into a 1D array), conditional expressions, and routine calls.  The symbolic execution and semantic analysis of units 
completes almost completely.  Details are shown in Table 4.  For realistic grids and number of iterations, the resulting loop 
sizes make symbolic execution much faster than conventional numerical execution. 
 
RVCQ3D is a 3k LOC, 2-dimensional CFD code that solves steady, aerodynamic flow over compressor blade sections.  
Written in FORTRAN77, it uses a moderate coding style and makes extensive use of mathematical and logical formulae.  
Currently, this code is a development test case where the current procedure is being extended to achieve complete symbolic 
execution.  

Code Lines 
(k loc) 

Semantic 
Declarations 

Symb Exec 
Wall Time 

(s) 

Symb Exec 
Wall Time/ 
k Lines (s) 

Unit 
Recognition 

Rate (%) 

Statements 
Executed  

(k) 

Max 
Memory
(MBytes)

COMDES 0.4 42 15.1 37.7 100.  2.8 

STAGE2 4.9 87 199.4 40.7 93.9  65.3 

RVCQ3D 3.3 49 - - -  - 

 
Table 4: Current performance results for the semantic analysis program’s analysis of three test cases.  Max. 
memory is the gross memory required to represent and retain all local and global semantic information during 
the semantic analysis; the executable size is 5.0 MByte.  Calculations performed on a PC with a Pentium 4 2.2 
GHz processor with 512 MByte of RAM. The analysis results reflect the semantic analysis code’s quality and 
not the quality or ability of the tested codes. 

 
5  Discussion of Challenging Issues 
 
In trying to achieve complete symbolic execution of the STAGE2 code, several challenging issues became apparent.  In the 
following sections, the roles of semantic complexity, inference chains, and problem closure are discussed. 
 
5.1 Semantic Complexity 
 

 



Refinement of this procedure (so that STAGE2 symbolically executed successfully) involved finding errors, generalizing 
rules and actions, and handling programming language constructs.  However, progressively more complex concepts were 
encountered, particularly where aggressive programming techniques were used.  For array references, for example, indices 
have been encountered that store a multi-dimensional array in a 1D array, and store multiple blocks of data in a 1D array.  A 
conceptually challenging array index is shown in Code 5.  Further, some codes have been encountered where the conditional 
branching is so complex that it cannot be understood by an experienced programmer. 
 
These experiences raise issues including, whether the population of semantic concepts used in code is limited or bounded.  
Will programmers use increasingly aggressive and obscure concepts?  Does clear, well written code use only a bounded set of 
basic semantic concepts?  Further, human programmers have limits to their knowledge and comprehension capabilities.  It is 
believed that the answers to these questions will be revealed, in part, by additional work on symbolic execution and semantic 
analysis. 
Code 5: Array index, i, demonstrates increasing semantic complexity. 

c                       spline evaluation 
      iend = 1 
      Do 400 j=1,n-1  
        ibeg = iend  
        Search for iend .st. x[j+1] ≤ xnew[iend] 
        Do 500 i=ibeg,iend-1  
         ... ACTION … 
 500    continue 
 400  continue 

 
5.2 Inference Chains and Recognition Reliability 
 
Another challenge of symbolic execution is reliability.  Recognizing and simplifying one expression depends on all the 
previous recognition results—the inference chain—and failing to recognize one result usually prevent any further recognition.  
For example, in Code 3, a failure to locate and assign to A(1) compromises the remainder of the analysis. 
 
A code’s inference chains can be exceedingly long.  In COMDES, chains as long as 140 inferences have been measured, and 
the longest chains in STAGE2 are probably at least an order of magnitude greater.  As code size and number of inferences 
increase, the chance of a recognition failure also increases and reliability decreases. 
 
This reliability challenge for symbolic execution contrasts with the human programming process.  It is believed that human 
programmers do not analyze code in this manner (from the start of execution); instead they look at smaller sections of code, 
assume the identity of variables and array layouts, make simplifying assumptions, and look for local inconsistencies. 
 
5.3 Problem Closure 
 
Complete symbolic execution of the STAGE2 code involved previous work[14] plus a large extension effort that was 
completed (part-time) over 3 years.  This effort involved the conception, development, and refinement of several techniques, 
including techniques for array references and assignments, loop execution, conditional expressions, and routine calls.   
 
Given this effort for one code, the crucial feasibility questions are “How much development is required for full symbolic 
execution of the next user’s code?” and “When does symbolic execution of a successive code become routine?”.  Refinement 
of symbolic execution by development and testing with the code RVCQ3D is a key test of the procedure’s state of 
development.  The expectation is that previous work will apply so that development time drops for each successive user’s 
code until closure is reached or fundamental limitations are discovered. 
 
6 Conclusions 
 
When this work was started, it was not clear that a 5k LOC scientific code could be automatically, rigorously, symbolically 
analyzed.  It was not clear that the semantics could be formalized, or that this formalization could be automated, or that 
sufficient reliability could be achieved. 
 

 



Now, what is not clear is how the population of semantic concepts will grow, how obscure concepts will be recognized, and 
how complex expressions will be simplified in yet larger codes. 
 
However, what has always been clear is that semantics are inseparable from scientific code development, and that semantics 
must be formalized and automatically recognizable so that we better understand and test our scientific codes.   
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