
 1 

 

 
                                         

AN EXPERIMENT IN AUTOMATED, SCIENTIFIC-CODE SEMANTIC ANALYSIS 

 
Mark E. M. Stewart 

Scott Townsend 

Dynacs Engineering, Inc. 

2001 Aerospace Parkway 

 Brook Park, OH 44142 

 

 

 
Abstract 

 

This paper concerns a procedure that analyzes aspects 

of the meaning or semantics of scientific and engineer-

ing code.  This procedure involves taking a user's 

existing code, adding semantic declarations for some 

primitive variables, and parsing this annotated code 

using multiple, independent expert parsers.  These 

semantic parsers are designed to recognize formulae in 

different disciplines including physics, numerical 

methods, mathematics, and geometry. The parsers will 

automatically recognize and document some static, 

semantic concepts and help locate some program 

semantic errors.  Results are shown for two intensively 

studied codes and two blind test cases.  These tech-

niques may apply to a wider range of scientific codes.  

If so, the techniques could reduce the time, risk, and 

effort required to develop and modify scientific codes. 

 

Introduction 

 

From a syntactic or programming language perspective, 

scientific programs are uses of a programming language 

that specify how numbers are to be manipulated.  

However, from the perspective of semantics or mean-

ing, scientific programs involve an organization of 

physical and mathematical equations and concepts. The 

programs from a wide range of scientific and engineer-

ing fields use and reuse these fundamental concepts in 

different combinations.  This paper explains an experi-

ment in representing, recognizing, and checking these 

fundamental scientific semantics
.
. 

 

What motivates this experiment is that semantics is a 

central issue in the development and modification of 

scientific code.  Reducing the errors in a scientific or 

engineering program until its results are trusted involves 

ensuring the program’s semantics are correct.  Further, 

this development process is expensive and time con-

suming because it is primarily a manual task.  The 

                                                           
 

existing software development tools (lint, ftnchek, 

make, dbx, SCCS, call tree graphs, memory leak 

testing) do not fully alleviate this problem and deal only 

superficially with semantics.  Further, verification 

techniques (comparison with available analytic and 

experimental results; verification of convergence and 

order of accuracy) can only detect the presence of an 

error; finding this error often leads to a time-consuming 

manual search. For example, the second difference code 

(1) contains a geometrical error in the grid index I, 

which is exceedingly hard to find manually. 

 

      FS(I,J) = DW(I+2,J) – 2.*DW(I,J) + DW(I-1,J)   (1) 

 

However, it can be found automatically with this 

semantic analysis procedure. 

 

Semantics’ role in program modification is similar to its 

role in code development.  Understanding another 

programmer’s code is usually frustrating and time 

consuming, and to understand code well enough to 

modify it confidently requires a large time investment.  

Suggestive variable names, program comments, 

program manuals, and communications with the 

developer are means to convey an understanding of a 

code, but these methods are often neither adequate nor 

efficient.  This semantic analysis procedure can repre-

sent and recognize important code details. 

 

Modern programming practice attempts to reduce the 

number of code development errors and to ease code 

modification.  Software reuse (through subroutine 

libraries) and object-oriented programming
1
 also target 

these problems, but these techniques cannot help when 

modifications and custom software are required.  

Recently there has been work in high-level specification 

languages
2 

where a symbolic manipulation program 

(Maple, Mathematica) is used to write subroutines or 

even programs.  Yet another attempt to solve these 

software problems is the field of formal methods
3
 that 

uses logic, set theory, functions, and algebra to develop 



 2 

mathematical models for systems and to rigorously 

prove code properties.   

 

Part of the problem with these tools is that it is difficult 

to represent knowledge.  Using the classical notation 

and methods of mathematics and physics simplifies 

knowledge representation in this work, yet representa-

tions (or ontologies) have been developed in other 

modern fields. Using an ontology for engineering 

knowledge representation and tool integration has been 

studied
4
.  In natural language understanding, parsing 

has been combined with an ontology to recognize and 

represent the semantics of written text
5
.  The use of both 

parsing and an ontology makes the natural language 

work similar to the current experiment with scientific 

programming.  

 

The limitations of these existing tools and approaches 

and the cost of manual semantic analysis are the 

motivations for the current experiment. As a comple-

mentary tool, automated semantic analysis
6 

could 

reduce the time, risk, and effort during original code 

development, subsequent maintenance, second party 

modification, and reverse engineering of undocumented 

code. 

 

This paper follows experimental report form with a 

thesis, procedure, results, discussion, and conclusion. 

 

Thesis 

 

The thesis of this semantic analysis experiment is that 

fundamental physical and mathematical formulae and 

concepts are reused and reorganized in scientific and 

engineering codes.  Further, a procedure, which com-

bines a parser
7,8,9

 with other methods, can recognize 

each reuse. 

 

If this experiment in automated analysis succeeds, the 

resulting tool would help locate errors during code 

development and document code for modification. 

 

 

Procedure 

 

In outline, the current procedure for testing this thesis 

consists of four key stages.  First, the user adds seman-

tic declarations to his/her existing program (2).    

 

                 C?   MA == mass                           

                 C?   ACC == acceleration                

                        FF = MA*ACC                                   (2)                  

 

Distinguished by “C?” these declarations provide the 

mathematical or physical identity of primitive variables 

in the user’s program.  Second, the procedure syntacti-

cally parses the user’s program into a data structure 

representation.  Third, a translation scheme converts 

statements in the user’s FORTRAN program into 

statements in different context languages.  For example, 

the FORTRAN expression in (2) is converted to the 

physical dimensions expression (3) and the physical 

quantity expression (4). 

 

                           (M) * ( L*T**-2 )                            (3)                             

                           mass * acceleration                          (4)                         

 

These context languages reflect the different aspects of 

program statements that scientists and engineers 

analyze.  Aspects include mathematical or physical 

quantity, geometrical (grid) location, geometrical entity, 

vector entity, dimensions, and units.  Fourth, independ-

ent expert parsers examine the translated phrases and 

attempt to recognize formulae from their area of 

expertise. For example, a dynamics expert parser would 

include the rule (5), be able to recognize the phrase (4) 

as “force” due to Newton’s law, and assign this result to 

FF in (2). 

 

                       force :  mass * acceleration                  (5)                                                             

 

Further, the units expert parser can reduce (3) and 

verify units.  The other expert parsers act similarly (see 

Table 1). 

 

 

Analyzed Aspect  Parsers 
Parser 

Rules 

Fundamental 

Equations 

Quantity-Math 3 410 49 

Quantity-Physical 3 615 94 

Value / Interval 2 201 27 

Grid Location 4 1648 232 

Geometrical Entity 1 441 20 

Vector Entity 1 305 11 

Non-Dimensional 1 72 5 

Dimensions 1 55 10 

Units 1 81 19 

 

Table 1: Aspect analyses performed by the semantic 

analysis procedure including number of parsers for each 

aspect, number of Yacc
8
 parser rules, and fundamental 

equations.  Rule (5) is a fundamental equation; some 

equations require several parser rules. 

 

When an expert parser recognizes an expression, it 

annotates the data structure representation of the user’s 



 3 

program with the observation.  Other expert parsers can 

use this observation to recognize more of the expres-

sion.  Further, the annotated data structure representa-

tion contains all the results of the semantic analysis, and 

a graphical user interface (GUI) displays these results as 

shown in Figure 1.  The user may point to variables and 

expressions in his/her code, and the GUI displays any 

semantic interpretation and its derivation.  The GUI 

highlights recognized errors, undefined quantities, and 

unrecognizable expressions.  Further, the GUI provides 

detailed scientific and technical definitions and explana-

tions.                      .                    

 

 

 

 

 

Figure 1: GUI display for the semantic analysis program.  The top window displays a user’s code; variables and 

expressions may be selected for explanation.  The middle region explains this selected text.  In this case, the physical 

quantity is density, it does not have a grid location, and it has the displayed dimensions, units, and derivation.  The 

bottom region displays the semantic dictionary/lexicon. 

 

 

 

 

 



 4 

Extended Example of Parsing for Code Recognition 
The most important step in the above procedure is the 
expert parsers’ analysis.  An example of how parser 
rules operate to recognize an expression is instructive.  
To determine the meaning of the variable VAR in (6), 
the parser sequentially examines the RHS of (6).  When 
the parser reads energy<internal> (EI), it anticipates 
rule (7d) and the tokens ‘+’ and work. 
 
   C?  P == pressure<static>, RHO == density<static> 
   C?  V == speed, EI == energy<internal> 
   C 
         VAR = EI + P / RHO + 0.5 * V * V                  (6) 
 
When the parser reads pressure<static> (P), it expects 
rule (7c) to produce work and the tokens ‘/’ and 
density<static> to appear.  When the parser sees all the 
tokens of rule (7c), it reduces them to the token work, 
and when all the tokens of rule (7d) are present, they are 
reduced to the token enthalpy.  The parser anticipates 
rule (7f) next.  Similarly, the parser recognizes rules 

(7b), (7a), and (7f) to infer that VAR represents 
enthalpy<total>.   
 
  speed_squared            :  speed * speed                             (7a) 

  energy<kinetic>          :  half * speed_squared                   (b) 

  work                            :  pressure<static>/density<static> (c) 

  enthalpy                      : energy<internal> + work              (d) 

  sound_speed_squared : gamma * work                              (e) 

  enthalpy<total>           : enthalpy + energy<kinetic>          (f) 

    

 (These rules have been simplified to intensive quantities.) 

 

The parser rules (7) do not execute sequentially as with 
statements in a conventional programming language.  
Instead the parser determines if and how the rules 
appear in the input.  Parser rules (7) are automatically 
converted to a subroutine by the program Yacc

8
.  Table 

2 gives a flavor of the expert parser rules.  Note also 
that each step in the recognition process depends on 
correctly performing the previous step; an error can 
dramatically reduce recognition.                  

 

        Mathematical, Numerical                      Physical 

                     Quantity                      Quantity 

                Grid Location, 

             Geometrical Entity 

                    q ⇐ q + 0                    p ⇐ F / area                      l ⇐ l1 ± l2 

                    q ⇐ q * 1                     F ⇐ m * A                      l ⇐ l1 */ l2 

 

                   0 ⇐ q1 - q2                 W ⇐ F * length                     g ⇐ g1 ± g2 
                  ∆q ⇐ q1 - q2                R ⇐ Ru / Mol. wt.                     g ⇐ g1 */ g2 

                  2q ⇐ q1 + q2                   R ⇐ Cp  - Cv 

              ∆2
q ⇐ q - 2q  + q                   Ru ⇐ k * NA 

                      Vector 

                       Entity 

                  Polynomials          Cp ⇐ Σ (Mass Fract.* Cp)                     v ⇐ v1 ± v2 

                   q
2
 ⇐q * q                     γ ⇐ Cp  / Cv                  v ⇐ v1 */ scalar 

                 Σq ⇐ q + q + ...                     w ⇐ p / ρ                surface ⇐ v1 * v2 

                ∂q/∂x ⇐ ∆q / ∆x                   c
2
 ⇐ γ * p / ρ          scalar ⇐ scalar ±*/ scalar 

              ∂2
q/∂x

2
 ⇐ ∆2

q / ∆2
x 

                        o
C ⇐ 

o
K – 273.15            scalar ⇐ Dot Product 

           ∂q/∂y ⇐ ∂q/∂x * ∂x/∂y 
                     o

F ⇐ 1.8 * 
o
C  + 32 

             vol ⇐ length * area                   p / ρ ⇐ R * T 

        Non-Dimensionalization, 

             Dimensions, Units 

           area ⇐ length * length              ∂m/∂t ⇐ ρ * U * A                   D ⇐ D1 ± D2 

               Ek ⇐ ½ * m * U
2
                   D ⇐ D1 */ D2                  Number Value, 

               Number Interval                    ek ⇐ ½ * U
2
                   D ⇐ ftn( D1 )  

                    n ⇐ n1 ± n2              ei ⇐ 1/(γ-1) * p / ρ                    d ⇐ d1 ± d2 

                   n ⇐ n1 */ n2                     h ⇐ ei + w                    d ⇐ d1 */ d2 

                   n ⇐ n1 ** n2                     ho ⇐ h + ek                    d ⇐ ftn( d1 ) 

                   n ⇐  ftn(n1)                      ν ⇐ µ / ρ                    u ⇐ u1 ± u2 

                    r ⇐ r1 ± r2       Reynolds ⇐ ρ * U * length/µ                    u ⇐ u1 */ u2 

                    r ⇐ r1 */ r2            u*∂u/∂x- (1/ρ)*∂p/∂x                    u ⇐ ftn( u1 ) 

                    q = Math/Numerical Quantity;     l = Grid Location;     g = Geometrical Entity;      v = Vector Entity; 

               n = Number Value;     r = Number Interval;    D = Non-Dimensionalization;    d = Dimensions;    u = Units 
 

 

Table 2: A sampling of expert parser rules used in the semantic analysis method.  Many rules are condensed. Due to 

decomposition a single operation may involve multiple independent aspects (units, grid location and quantity for 

x_coordinate – x_coordinate), and several rules from this table can apply to it.     



 5 

Properties of the Procedure 

Several additional features and properties of this 

automated semantic analysis procedure deserve men-

tion: semantic declaration terms, mathematical rules, the 

generality of recognition, the nature of error detection, 

and the presence of ambiguities. 

 

   Terms in Semantic Declarations 

The code fragment (6) includes four semantic declara-

tions.  The six defining terms pressure, static, density, 

speed, energy, and internal are from a lexicon of terms 

(currently 380), and they closely resemble English 

technical terms.  Further, the knowledge representation 

uses adjective terms, such as static in pressure<static>, 

to modify terms and reduce their number.  Multiple 

adjectives are possible.  For example, the term deriva-

tive takes two adjectives, derivative<pressure time>, to 

represent ∂p/∂t. 

 

   Mathematical Rules 

The physical rules (7) differ from mathematical rules, 

since mathematical rules apply to any mathematical or 

physical quantity.  For example, to detect a discrete 

difference, ∆q, the pattern is variable−variable where 

variable is any quantity.  This pattern matches exces-

sively, and when it does match, additional code com-

pares the aspects of the two variables.  If the variables 

are identical, then the expression is zero; if the variables 

differ in location only, then the expression is a discrete 

difference, ∆q; if the variables differ in geometrical 

entity in a specific way, then the expression is a second 

order Jacobian. 

 

  Non-General Derivation 

The general derivation of equations is dependent upon 

the fundamental physical equations, the algebraic 

properties of mathematical expressions (Commutative, 

Distributive and Associative laws), and the transforma-

tion laws of equations (equation substitution and 

algebraic solution).  However, this general derivation of 

equations is a non-trivial and potentially expensive 

search. 

 

In comparison, the rules within a Yacc
8
 parser (or more 

formally a LALR(1)
7,8

 grammar) are a specialized type 

of rewrite rule, referred to here as reduction substitution 

rules since they rewrite and reduce one or more input 

tokens to a single token.  The rule (8a) substitutes one 

token (LHS) for two tokens (RHS).   

 
 enthalpy<total>                   : enthalpy + energy<kinetic>(8a)                 
 enthalpy + energy<kinetic>: enthalpy<total>                    (b)               

 energy<kinetic> + enthalpy: enthalpy + energy<kinetic> (c) 

 

However, the substitution (8b) and the commutative 

transformation (8c) cannot be directly implemented in a 

Yacc grammar since they rewrite to more than one 

token. 

 

Although parsers allow fast and efficient rule recogni-

tion, the parser rules will allow only a small subset of 

the algebraic and equation laws to be implemented.  

Consequently, by using only Yacc parsers, it is not 

possible to perform general derivations and compare 

them with expressions in scientific and engineering 

codes. 

 

   Enhanced Recognition 

To resolve this recognition problem, the parsers are 

supplemented with five methods. The first three of these 

methods give a moderate algebraic search.  This 

strategy tries to avoid expensive general searches each 

time the formula is encountered.  The existing evidence 

indicates this is a reasonable choice. 

 

In the first method, the experts are applied incremen-

tally to expression components. In (9) the sub-

expressions p/ρ, u
2
, and ½u

2
 are separately referred to 

each of the expert parsers for analysis. 

 

                                  p/ρ  + ½ u
2
                                (9) 

 

Second, between calls to the expert parsers, methods are 

applied that commute, associate, and distribute (and 

inverse distribute) the expression. 

 

Third, some limited substitutions can be performed 

between referrals to the expert parsers. Examples 

include, 2ai ⇐ ai+1 + ai-1 or the normalizing transforma-

tion u
2
 ⇐ u*u. 

 

A fourth method of enhancing recognition is decompo-

sition of semantic knowledge.  For example by analyz-

ing a quantity’s axis, the vector entity expert parser can 

recognize a dot product (10) almost independently of 

the physical quantity, u.  (Note: verifying that ux
2
, uy

2
, 

and uz
2
 are otherwise identical is the further necessary 

test.) 

 

                             ux
2
  +  uy

2
  +  uz

2
                           (10) 

 

This near independence of aspects extends to the 

analysis of mathematical/physical quantity, number 

value, number interval, grid location, geometrical entity, 

vector entity, non-dimensionalization, dimensions, and 

units. 

 



 6 

In the fifth method, constants are identified when the 

expert parser’s input is prepared.  For example, in (11) 

the constant 32 is distinguished from other constants for 

the parser analyzing temperature equations. 

      

                       
o
F = 1.8 * 

o
C + 32                       (11)              

 

The use of 32 in (11) is an example of how this en-

hanced recognition process is context sensitive
7
, since 

in other contexts this constant can have other meanings. 

 

  Error Detection 

This semantic analysis procedure detects errors with 

direct tests of some code aspects including dimensions, 

units, and non-dimensionalization.  For other code 

aspects, including mathematical/physical quantity, the 

semantic analysis procedure attempts to recognize 

formulae.  Unrecognized code may be incorrect or a 

correct formula beyond the scope of the stored rules.  

For example, the procedure would declare the aerody-

namics equation (12) unrecognized (pressure is incor-

rectly calculated from density, total energy, velocities 

and the ratio of specific heats); (12) cannot be declared 

in error since it may be an unknown rule. 

 

         P = RHO*(E – ( U*U + V*V ))*(GAM-1)      (12) 

 

However, in cases where multiple conditions must be 

satisfied before recognition, the failure of one condition 

is evidence of an error.  For example, to recognize a 

second-difference, formula and geometrical conditions 

must be satisfied; however in (1) the geometrical 

condition is not satisfied and an error is suspected.  

Although this semantic analysis procedure is not a 

direct error tester, by reviewing the analysis, users can 

identify errors relatively easily. 

 

   Ambiguities 

A further theoretical issue is that ambiguities exist in the 

static analysis of scientific code.  The final identity of 

the variable P is ambiguous in (13). 

 

                   C?   P == pressure<static> 

                   C?   RHO == density<static> 

                          CC = GAM * P / RHO                    (13) 

                          P = 1 

 

After P is assigned the indistinct value 1, it may still 

represent pressure, or it may represent something else 

with the constant value 1.  This ambiguity would not 

exist if the assignment were P = 3.14 or P = RHO.  The 

procedure resolves this ambiguity by assuming no 

memory re-use; the new number value is set, and a 

warning is generated.  The ambiguity can be resolved if 

the user rewrites the code so that P is not re-used. 

 

Another ambiguity can exist when deducing an array’s 

layout.  In a static analysis, the indices in array assign-

ment can be under-specified and suggest different array 

layouts. In (14), it is not clear if N<3, N>3, or N=3 

since the value of N is not known. 

 

                  C?   N == number<species> 

                  C?   R == radius 

                         DIMENSION A(10)                        (14) 

                         A(3) = 0. 

                         A(N) =  R 

 

This ambiguity is resolved with semantic declarations 

for array structure or by assuming (and noting) a case. 

 

Results 

 

The results take two forms: the recognition of code 

semantics and the generality of this recognition capabil-

ity. 

 

Recognition of Code Semantics 

The results of analyzing two development codes 

demonstrate recognition of code semantics.  One 

program performs data reduction for experimental data 

analysis, and the other is twenty subroutines from the 

ALLSPD
10

 code. ALLSPD is a 3D, implicit, general-

ized curvilinear coordinate code for chemically reacting 

flows. In development test cases, the procedure devel-

opers devise and test expert parser rules, and correct 

any errors.  Hence these are not blind test cases. 

 

Highlighted in the GUI of Figure 1 is a recognized 

expression from the first development code.  Other 

recognized formulae include temperature formulae, 

viscosity and thermal conductivity calculated from the 

power law, Reynolds number, and Prandtl number.  

Most of the not-understood code corresponds to 

program variables that are defined by function calls and 

logical expressions.  The semantic analysis coding 

needed for these cases has not yet been developed. 

 

To measure this recognition of code semantics, the 

procedure examines each operation, a⊗b where 

⊗∈{ +, −, ∗, /, ∗∗ }, intrinsic function reference, ftn(a), 

and array reference, a(i,j,k), in the code.  The recogni-

tion fraction is the fraction of these opera-

tions/references where the mathematical/physical 

quantity is understood.  In Figure 2, the recognition 

fraction for the first development case is plotted against  

 

 



 7 

 
Figure 2: Graph showing the increase in expression understanding as semantic declarations are added to a data 

reduction subroutine.  The subroutine contains 160 operations to understand and approximately 100 lines of code. 

 

 

an increasing number of semantic declarations.  The 

curve is offset from the origin since some trivial 

expressions are recognizable without semantic declara-

tions. 

 

Twenty ALLSPD subroutines (5500 FORTRAN 

statements) form an additional development case where 

the analysis tool achieved an understanding fraction of 

0.51 (see Figure 3).  Input and primitive variables were 

semantically declared.  The user effort to prepare these 

declarations is modest compared to the effort of 

syntactically declaring all variables as required by 

modern programming practice and some programming 

languages. 

 

Generality of Recognition Capability 

Blind tests of two codes demonstrate the generality of 

this semantic analysis procedure.  These test cases are 

the ENG10
11

 code with 20k lines of FORTRAN code 

(loc) and the ADPAC
12

 code (86k loc).  Both are 

explicit, finite-volume fluid dynamics codes.  The 

procedure developers examined these test codes to 

determine semantic declarations for coordinates and 

solution variables.  The semantic analysis program was 

not modified to correct errors. 

 

Recognition results for these blind test cases are shown 

in Figure 4, and they demonstrate a general semantic 

recognition capability.  Of course, these results reflect 

the analysis code’s level of development and not the 

quality of these blind test cases.  One would expect the 

development codes to have a higher recognition fraction 

since the procedure developers correct expert parser 

errors found during development.  Additional work on 

the procedure will improve these preliminary results. 

 

Discussion 

 

This automated semantic analysis procedure has 

properties advantageous for analysis of scientific 

programming.  First, parsers can recognize mathemati-

cal, physical, and geometrical knowledge in code.  

Second, parsers can encapsulate formulae into inde-

pendent modules.  Third, these rules are largely funda-

mental, which increases generality, and they are largely 

aspect-independent, which reduces complexity.   The 

data structures used to represent the code are effective 

and allow manipulations.  Last, the economics of this 

procedure appear to be favorable.  In particular, the 

number of semantic declarations is reasonable, and the 

execution time on a modern workstation is under one 

minute per thousand lines of code. 

 



 8 

 
Figure 3: Graph showing the increase in expression understanding as semantic declarations are added to twenty 

subroutines from the ALLSPD code.  The subroutines contain 5278 non-comment FORTRAN statements and 3431 

operations to understand.  Further work will increase the understanding fraction.  The analysis results reflect the 

analysis code’s quality and not the quality or ability of the ALLSPD code. 

 
Figure 4: Graph showing the increase in expression understanding as semantic declarations are added to two blind 

test cases.  The ADPAC codes contain 86k loc, and the ENG10 code contains 20k loc. The understanding fraction 

for development codes is higher than blind test case codes because the procedure developers correct expert parser 

errors found during testing.   Further work will increase the understanding fraction.  The analysis results reflect the 

analysis code’s quality and not the quality or abilities of the ADPAC or ENG10 codes. 

 

 



 9 

Potential Limitations 

Despite these advantages, several potential limitations 

have been identified and must be monitored as the 

procedure develops.  First, the procedure lacks the code 

to analyze the following constructions correctly: array 

structure, boundary conditions, logical expressions, 

subroutine calls and the call tree. As the procedure 

develops this infrastructure problem will disappear.  

Second, as noted earlier, when attempting to recognize 

an expression, this procedure does not perform a 

general derivation/search but only a moderate search.  

These searches will limit recognition but not exces-

sively.  Third, a stability problem could exist because 

errors and omissions in the expert parser rules can 

reduce the recognition fraction.  This loss of recognition 

occurs because recognition involves long inference 

chains that can be broken by an error.  Fourth, although 

adding rules requires moderate expertise, the large 

number of physical formulae may mean it takes signifi-

cant effort to incorporate these rules into the procedure.  

Fifth, the current implementation uses sizeable amounts 

of memory, and for big analyses, execution is memory 

bound. 

 

Further, to achieve the best results with this procedure 

requires a particular style of structured programming. 

For example, the real constants in (15) are evaluations 

of γ/(γ-1), 2/γ, and (γ-1)/γ for a particular value of the 

ratio of specific heats, γ. 

 
  numer=3.8249*(r**1.4771)*(1-r**0.26145)*(1-beta**4) 

  denom= (1-r)*(1-(beta**4)*r**1.4771)                           (15) 

 

As numbers they are hard to recognize, and to be 

recognized, this code would have to be rewritten. 

 

Conclusions 

 

We spend too much time slaving over our codes, 

analyzing details; and this experiment strives to auto-

mate these menial chores.  Further, its use of fundamen-

tal representation and expert parsers provides an 

example for automating other scientific and engineering 

tasks, such as design.  As detailed in our discussion 

section, if this procedure is to achieve its full potential, 

we must tackle problems that fall into three categories: 

• Develop the procedure's infrastructure:  array struc-

ture, logical expressions, subroutine calls  

• Extend discipline detail by adding physical, mathe-

matical, and geometrical rules 

• Improve generality, utility, and economy 

 

Acknowledgments 

 

The lexical analysis routines and FORTRAN grammar 

are from ftnchek
13

.  The GUI routines use Tcl/Tk
14

.  

This work was supported by the NASA High Perform-

ance Computing and Communications program through 

the Computing and Interdisciplinary Systems Office 

(contract NAS3-98008) at NASA Glenn Research 

Center. Greg Follen, Joe Veres, and Karl Owen were 

the monitors.  The authors thank Ambady Suresh for 

helpful discussions about this work. 

 

Bibliography 

 
1
 W. Y. Crutchfield and M. L. Welcome, “Object 

Oriented Implementation of Adaptive Mesh Refinement 

Algorithms," Scientific Programming 2 (1993) 2, 145-

156. 
2
 E. Kant, “Synthesis of Mathematical Modeling 

Software," IEEE Software, May 1993. 
3
J. Woodcock and M. Loomes, Software Engineering 

Mathematics (Pitman, London, 1988). 
4
M. R. Cutkosky, R. S. Engelmore, R. E. Fikes, et. al., 

“PACT: An Experiment in Integrating Concurrent 

Engineering Systems," IEEE Computer, Jan. 1993. 
5
J. Allen, Natural Language Understanding (Benja-

min/Cummings, Menlo Park, 1987). 
6
 M. E. M. Stewart, “A Semantic Analysis Method for 

Scientific and Engineering Code,'' NASA CR 207402, 

April 1998. 
7
A.V. Aho, R. Sethi, and J. D. Ullman, Compilers: 

Principles, Techniques, and Tools (Addison-Wesley, 

Reading, 1986). 
8
S. C. Johnson, “Yacc--Yet Another Compiler-

Compiler,” Comp. Sci. Tech. Rep. No. 32. (AT&T Bell 

Laboratories, Murray Hill, 1977). 
9
J. R. Levin, T. Mason, and D. Brown, Lex and Yacc 

(O’Reilly, Sebastopol, 1992). 
10

J.-S. Shuen, K.-H. Chen, and Y. Choi, “A Coupled 

Implicit Method for Chemical Non-equilibrium Flows 

at All Speeds,”  J. of Comp. Phys., 106, No. 2, 306, 

1993. 
11

M. E. M. Stewart, “Axisymmetric Aerodynamic 

Numerical Analysis of a Turbofan Engine,” ASME 

Paper 95-GT-338, 1995. 
12

E. Hall, N. J. Heidegger, and R. A. Delaney, “ADPAC 

v 1.0 – User’s Manual,” NASA CR 1999-206600, Feb. 

1999. 
13

R. K. Moniot, “ftnchek” http://www.dsm.fordham. 

edu/~ftnchek (Fordham University, New York, 1989).  
14

J. K. Ousterhout, Tcl and the Tk Toolkit (Addison-

Wesley, Reading, 1994). 

 

 


